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Our articles related to this talk

◮ Kolm and Ritter (2019), “Dynamic Replication and Hedging: A
Reinforcement Learning Approach,” Journal of Financial Data
Science, 1 (1), 2019

◮ Kolm and Ritter (2020), “Modern Perspectives on
Reinforcement Learning in Finance,” Journal of Machine
Learning in Finance, 1 (1), 2020. Also available here:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3449401

◮ Du, Jin, Kolm, Ritter, Wang, and Zhang (2020), “Deep
Reinforcement Learning for Option Replication and Hedging,”
Journal of Financial Data Science, 2 (4), 2020
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Background & motivation
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Replication & hedging

◮ Replicating and hedging an option position is fundamental in
finance

◮ The core idea of the seminal work by Black-Scholes-Merton
(BSM):
◮ In a complete and frictionless market there is a continuously

rebalanced dynamic trading strategy in the stock and riskless
security that perfectly replicates the option (Black and Scholes
(1973), Merton (1973))

◮ In practice continuous trading of arbitrarily small amounts of
stock is infinitely costly and the replicating portfolio is
adjusted at discrete times
◮ Perfect replication is impossible and an optimal hedging

strategy will depend on the desired trade-off between
replication error and trading costs
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Related work I

◮ While number of articles consider hedging in discrete time or
transaction costs alone, Leland (1985) was first to address
discrete hedging under transaction costs
◮ His work was subsequently followed by others (see, for

example, Figlewski (1989), Boyle and Vorst (1992), Henrotte
(1993), Grannan and Swindle (1996), Toft (1996), Whalley
and Wilmott (1997), and Martellini (2000))

◮ The majority of these studies consider proportional transaction
costs

◮ More recently, several studies have considered option pricing
and hedging subject to both permanent and temporary market
impact in the spirit of Almgren and Chriss (1999), including
Rogers and Singh (2010), Almgren and Li (2016), Bank,
Soner, and Voß (2017), and Saito and Takahashi (2017)

◮ Halperin (2017) applies reinforcement learning to options but
does not consider transaction costs
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Related work II
◮ Buehler, Gonon, Teichmann, and Wood (2018) evaluate

NN-based hedging under coherent risk measures subject to
proportional transaction costs

◮ Cannelli, Nuti, Sala, and Szehr (2020) compare the risk-averse
contextual k-armed bandit (R-CMAB) to DQN for the hedging
of options in the BSM setting

◮ Cao, Chen, Hull, and Poulos (2020) explore DRL methods for
option replication in BSM and stochastic volatility setups,
comparing the performance of accounting P&L and cash flow
approaches
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What we do
In these articles we:
◮ Show how to use reinforcement learning (RL) to optimally

hedge an option (or other derivative securities) in a setting
with
◮ Discrete time rebalaning
◮ Nonlinear transaction costs
◮ Round-lotting

◮ The framework allows the user to “plug-in” any option pricing
and simulation library, and train the system with no further
modifications
◮ Uses a continuous state space
◮ Nonlinear regression techniques to the “sarsa targets”
◮ State-of-the-art deep RL (DQN, DQN with Pop-Art, PPO)
◮ The system learns how to optimally trade-off trading costs and

hedging variance
◮ The approach extends in a straightforward way to arbitrary

portfolios of derivative securities
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Reinforcement learning
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What is reinforcement learning I

◮ RL agent interacts with its environment. The “environment” is
the part of the system outside of the agent’s direct control

◮ At each time step t, the agent observes the current state of the
environment st and chooses an action at from the action set

◮ This choice influences both the transition to the next state, as
well as the reward Rt the agent receives

Environment

Reward ActionState

RL Agent
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What is reinforcement learning II
◮ A (deterministic) policy π : S → A is a “rule” that chooses an

action at conditional on the current state st
◮ RL is the search for policies which maximize the expected

cumulative reward

E[Gt ] = E[Rt+1 + γRt+2 + γ2Rt+3 + . . . ]

where γ is discount factor (such that the infinite sum
converges)

◮ Mathematically speaking, RL is a way to solve multi-period
optimal control problems

◮ Standard texts on RL includes Sutton and Barto (2018) and
Szepesvari (2010)
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What is reinforcement learning III
◮ The action-value function expresses the value of starting in

state s, taking an arbitrary action a, and then following policy
π thereafter

Qπ(s, a) := Eπ[Gt | St = s,At = a] (1)

where Eπ denotes the expectation under the assumption that
policy π is followed

◮ If we knew the Q-function corresponding to the optimal policy,
Q∗, we would know the optimal policy itself, namely

π∗(s) = arg max
a∈A

Q∗(s, a) (2)

This is called the greedy policy
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What is reinforcement learning IV
◮ The optimal action-value function satisfies the Bellman

equation

Q∗(s, a) = E
!
R + γmax

a′
Q∗ "s ′, a′

#$$$$ s, a
%

(3)

◮ The basic idea of Q-learning is to turn the Bellman equation
into the update

Qi+1(s, a) = E
!
R + γmax

a′
Qi

"
s ′, a′

#
| s, a

%
, (4)

and iterate this scheme until convergence, Qi → Q∗
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What is reinforcement learning V
◮ In deep Q-learning the action-value function is approximated

with a deep neural network (DNN)

Q(s, a; θ) ≈ Q∗(s, a) (5)

where θ represents the network parameters. The DNN is then
trained by minimizing the sequence of losses

Li (θi ) = E(s,a,R,s′)∼U(D)

!
L
&
Q(s, a; θi )− R − γ max

a′
Q(s ′, a′; θ−i )

'%

where L is some loss function
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Reinforcement learning for hedging
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Automatic hedging in theory I

◮ We define automatic hedging to be the practice of using
trained RL agents to handle hedging

◮ With no trading frictions and where continuous trading is
possible, there may be a dynamic replicating portfolio which
hedges the option position perfectly, meaning that the overall
portfolio (option minus replication) has zero variance

◮ With frictions and where only discrete trading is possible the
goal becomes to minimize variance and cost
◮ We will use this to define the reward

15 / 36



Automatic hedging in theory II
◮ This suggest we can seek the agent’s optimal portfolio as the

solution to a mean-variance optimization problem with
risk-aversion κ

max
"
E[wT ]−

κ

2
V[wT ]

#
(6)

where the final wealth wT is the sum of individual wealth
increments δwt ,

wT = w0 +
T(

t=1

δwt

We will let wealth increments include trading costs
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Automatic hedging in theory III
◮ We choose the reward in each period to be

Rt := δwt −
κ

2
(δwt − )µ)2 (7)

where µ̂ is an estimate of a parameter representing the mean
wealth increment over one period, µ := E[δwt ].

◮ Thus, training reinforcement learners with this kind of reward
function amounts to training automatic hedgers who tradeoff
costs and hedging variance

◮ See Ritter (2017) for a general discussion of reward functions
in trading
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Automatic hedging in practice I

◮ Simplest possible example: A European call option with strike
price K and expiry T on a non-dividend-paying stock

◮ We take the strike and maturity as fixed, exogenously-given
constants. For simplicity, we assume the risk-free rate is zero

◮ The agent we train will learn to hedge this specific option with
this strike and maturity. It is not being trained to hedge any
option with any possible strike/maturity

◮ For European options, the state must minimally contain (1)
the current price St of the underlying, (2) the time
τ := T − t > 0 remaining to expiry, and (3) our current
position of n shares

◮ The state is thus naturally an element of

S := R2
+ × Z = {(S , τ, n) | S > 0, τ > 0, n ∈ Z}.
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Automatic hedging in practice II
◮ The state does not need to contain the option Greeks, because

they are (nonlinear) functions of the variables the agent has
access to via the state
◮ We expect the agent to learn such nonlinear functions on their

own

◮ A key point: This has the advantage of not requiring any
special, model-specific calculations that may not extend
beyond BSM models
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Simulation assumptions I

◮ We simulate a discrete BSM world where the stock price
process is a geometric Brownian motion (GBM) with initial
price S0 and daily lognormal volatility of σ/day

◮ We consider an initially at-the-money European call option
(struck at K = S0) with T days to maturity

◮ We discretize time with D periods per day, hence each
“episode” has T · D total periods

◮ We require trades (hence also holdings) to be integer numbers
of shares

◮ We assume that our agent’s job is to hedge one contract of
this option

◮ In the specific examples below, the parameters are
σ = 0.01, S0 = 100,T = 10, and D = 5. We set the
risk-aversion, κ = 0.1
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Simulation assumptions II
◮ T-costs: For a trade size of n shares we define

cost(n) = multiplier × TickSize × (|n|+ 0.01n2)

where we take TickSize = 0.1
◮ With multiplier = 1, the term TickSize × |n| represents the

cost, relative to the midpoint, of crossing a bid-offer spread
that is two ticks wide

◮ The quadratic term is a simplistic model for market impact
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Example: Baseline agent (discrete & no t-costs)
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Figure 1: Stock & options P&L roughly cancel to give the (relatively low
variance) total P&L. The agent’s position tracks the delta
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Example: Baseline agent (discrete & t-costs)
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Figure 2: Stock & options P&L roughly cancel to give the (relatively low
variance) total P&L. The agent trades so that the position in the next
period will be the quantity −100 ·∆ rounded to shares
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Example: T-cost aware agent (discrete & t-costs)
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Kernel density estimates of total P&L
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Figure 3: Kernel density estimates of the t-statistic of total P&L for each
of our out-of-sample simulation runs, and for both policies represented
above (“delta” and “reinf”). The “reinf” method is seen to outperform in
the sense that the t-statistic is much more often close to zero and
insignificant. 25 / 36



Extensions I
We have extended this approach in several different directions.
Here is a summary of our findings:
◮ An agent can be trained at once for a whole range of strikes

and maturities
◮ Deep Q-learning (DQN) and double deep Q-learning (DDQN)

(Hasselt, 2010; Mnih, Kavukcuoglu, Silver, Rusu, Veness,
Bellemare, Graves, Riedmiller, Fidjeland, and Ostrovski, 2015;
Van Hasselt, Guez, and Silver, 2016) are “easy” to work with,
but suffers from slow convergence

◮ DQN with Pop-Art (Hasselt, Guez, Hessel, Mnih, and Silver,
2016) improves training and overall performance due to its
adaptive normalization
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Extensions II
◮ Proximal policy optimization (PPO) and actor-critic

policy-based reinforcement learning (Schulman, Wolski,
Dhariwal, Radford, and Klimov, 2017; Wu, Mansimov, Grosse,
Liao, and Ba, 2017)
◮ Converge ∼ 2 magnitudes faster, and
◮ Produce more robust policies than DQN
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Pop-Art normalization stabilizes DQN

Figure 4: Left panel: It is well-known that DQN can diverge when the
exploration rate becomes small. Right panel: Pop-Art remedies the
divergence of DQN.
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Proximal Policy Optimization (PPO) learns faster than DQN
– By far

Figure 5: Left panel: Reward of DQN. Right panel: Reward of PPO.
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Conclusions I
We have studied an RL-based framework that hedges options under
realistic conditions of discrete trading, nonlinear t-costs and round
lotting

◮ Our approach does not depend on the existence of perfect
dynamic replication. The system learns to optimally trade off
variance and cost, as best as possible using whatever securities
it is given as potential candidates for inclusion in the
replicating portfolio

◮ A key strength of the RL approach: It does not make any
assumptions about the form of t-costs. RL learns the
minimum variance hedge subject to whatever t-cost function
one provides. All it needs is a good simulator, in which t-costs
and options prices are simulated accurately
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Conclusions II
◮ We have extended the approach in a number of different

directions using state-of the-art deep RL such as DQN, DQN
with Pop-Art and PPO
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