

- Bitcoin Miners:
 - About 18.5 million coins have been mined
 - BTC supply stops in 2140, capped at 21 million
 - Currently, 6.25 coins mined every 10 mins
 - About 150,000 BTC mined since 1 Jan 2021
 - 150,000 BTC worth almost \$10 trillion at height of market
- Option Traders:
 - Open interest on Deribit bitcoin options currently \sim \$6 billion
 - Relative volumes \Rightarrow market makers delta hedge with perpetual futures

Carol Alexander

5 / 41

- Bitcoin is the underlying asset
 E.G. CME contracts have notional value 5 or 0.1 BTC
 - Quoted, margined and settled in USD
 - Standard expires, but do not trade 24/7
- USDT direct futures

 - Bitcoin is the underlying asset
 E.G. Bybit direct USDT futures have notional value of 1 BTC
 - Quoted, margined and settled in a stablecoin like USDT
 - Non-standard expires, traded 24/7
- USD inverse futures
 - Quoted in USD per bitcoin, like direct futures
 - But with USD notional and margined and settled in BTC
 - E.G. Binance inverse futures have a notional value of \$100
 - Non-standard expires, traded 24/7 Carol Alexander

Carol Alexander

9 / 41

Introduction Trading Volumes on Main Exchanges BitMEX Bybit Coribit OKEx (asn Billion Weekly Volume Nov 2020 Jan 2021 A: USD Inverse Perpetuals Binance Bybit OKEx (DSL Billion 15 Weekl Jul Nov 2020 Jan 2021 B: USDT Direct Perpetuals 10 / 41 Carol Alexander

Speculation

Auto-Liquidations

Introduction 00000000	Auto-Liquidation	ns Transmissions 00000000	H	edging 00000000	Speculation 000000	References						
	Bina	ance USDT	Direc	t Perpet	ual							
		125y LISDT-Margined Perm	atual Cont	ract (BTCUSDT)								
		Position	Leverage	Initial Margin Rate								
	(Netional Value in US07) 0 < Position < \$0,000 125x 0.80%											
		50.000 < Position ≤ 250.000	100×	1.00%								
	296000 (Notifius 100000) 90x 220%											
	1,000,000 < Position s 10,000,000 20x 5,00%											
		10,000,000 < Position ≤ 20,000,000	10x	10.00%	rates across the main spot exchanges							
	_	20.000.000 < Position \$ 50,000,000	5×	20.00%								
	_	50,000,000 < Position s 100,000,000	4x	25.00%								
		200,000,000 < Position ≤ 300,000,000	2×	50.00%								
		300,000,000 < Position ± 500,000,000	1x	100.00%								
 Maxir 	mum leverag	e decreases with	n posit	ion size								
Maint	toponco mor	rin rato is half t	ho init	ial margin	rato							
• Iviaiiii	tenance man	gin rate is nam t	ne mit	.iai margin	rate							
		Contract Sr	pecifica	ations								
Ca	arol Alexander			11	/ 41							

Auto-Liguidations Transmissions Hedging Speculation Referent 000000000 Historical Frequency of Auto-Liquidation Auto-Liquidation Referent

- Suppose trader opens 1 long or short position, so max. leverage is 100X
- Suppose leverage is 5X, 20X, 50X or 100X
- So initial margin rate is 20%, 5%, 2% or 1%
- Assume maintenance margin rate is half the initial margin
- What is probability of auto-liquidation if position is held for 8h 30d?

	Leverage	8h	1d	5d	15d	30d
-	5X	0.25%	1.34%	7.49%	15.38%	22.29%
Long	20X	18.84%	35.56%	56.48%	65.12%	66.17%
	50X	45.05%	61.04%	76.98%	82.16%	82.43%
	100X	64.19%	75.57%	85.12%	87.89%	87.94%
	5X	0.65%	4.95%	31.34%	60.44%	80.98%
Short	20X	20.62%	41.73%	75.14%	91.00%	96.51%
	50X	49.71%	70.35%	89.19%	96.35%	98.17%
	100X	69.41%	83.39%	93.48%	97.71%	98.85%

Bybit USD Inverse Perpetuals 1-min data, 1 July 2020 to 31 May 2021 Carol Alexander 13 / 41

Auto-Liquidations on USD Inverse Perpetuals (\$Billion)

4-hourly data from coinanalyse.net

- Auto-liquidations are greatest on Bybit, but so is open interest
- BitMEX & Deribit also forced abnormal liquidations between 11 and 19 May
- Deribit's liquidations \Leftarrow market makers using perpetual to delta hedge options

14 / 41

Carol Alexander

- Greatest amount of liquidations Sun 00:00 08:00 and Mon 08:00 16:00
- Carol Alexander 15 / 41

- Sunday average returns are negative $\sim -5~{\rm bps}$
- Monday average returns are positive $\sim +10$ bps

Carol Alexander

16 / 41

<page-header>Matter Liquidations (1) Concernsions (1) Concernsions

 Material Constraints
 Transmission Occorr
 Medging Constraints
 Speculation Constraints
 References

 9
 Auto-Lipukitations Constraints
 Auto-Lipukitations Constraints
 Speculation Constraints
 Speculation Constraints
 References

 9
 Numerous recent papers on bitcoin price discovery
 Boot focus on the role of CME futures
 Most focus on the role of CME futures

 9
 Instead, Alexander and Heck (2020) and Alexander et al. (2020b) highlight the role of unregulated exchanges such as BitMEX
 And Alexander et al. (2020a) examines price discovery in ether

 9
 But crypto markets change extremely rapidly
 Not only through innovations such as DeFi and NFTs

 9
 But also due to actions of US regulators
 And the Chinese government ... and Elon Musk

 9
 Price and volatility transmissions now mostly from the Binance Asia exchange

 9
 And the most influential Binance product is its USDT perpetual

 9
 Is trading on this product driving tether grants?

 9
 Tether market cap is now \$62 billion and rising!

Work in progress

Carol Alexander

17 / 41

Perpetual Specifications and Data

	USE	USDT Contracts	
	Binance	Bybit	Binance
Туре	Inverse	Inverse	Direct
Contract Size	100 USD	1 USD	0.001 BTC
Initial Margin Rate	> 0.8%*	1%	> 0.8%*
Settlement Currency	BTC	BTC	USDT
Trading Days	24/7	24/7	24/7
Funding Frequency	8 hrs	8 hrs	8 hrs
Fees (maker/taker) in bps	1/5	-2.5/7.5	2/4
Tick Size			

Note: Only showing the main perpetual contracts analysed. *Margin rates on Binance increase with notional value of position

- Second-by-second data from 1 January to 31 March 2021
- Calculate realised volatility at 5-minute frequency
- Winsorizing top 0.05% to reduce influence of extreme outliers
- Pre-averaging to reduce microstructure noise

Carol Alexander

20 / 41

Introduction	Auto-Liquidations 000000	Transmissions 00000000	Hedging	Speculation 000000	References					
\vee	ector Logari	thmic Mult	iplicative E	rror Mode	el					
Bas	Basic specification for 5-min realised volatilities of 6 exchanges, $m{x}_t$:									
	$x_t = \mu_t \odot \varepsilon_t$									
	$\log \mu_t = \mathbf{w} + \mathbf{A} \log x_{t-1} + \mathbf{B} \log \mu_{t-j}$									
 Implic 	itly guarantees no	on-negativity of	realised volatili	ties						
 Decor and e 	nposes realised vo rror term with uni	olatility into Had it mean and a d	lamard product istribution with	of conditionation	l mean support					
• Log c	onditional mean is	s autoregressive	\Rightarrow long-term e	ffects B						
 Deper 	ndence on lagged	observations log	$\mathbf{g} oldsymbol{x}_{t-1} o short_{t-1}$	-term spillover	rs, A					

- Add asymmetric response component to capture leverage effect
- · Also use an extension to capture zeros in high-frequency time series
- Also use dummies to investigate time-zone effects

Results –	Main	Instruments	

	Coinbase	$Binance^{S}$	Huobi	$\mathbf{Binance}^T$	Bybit	Binance [®]
CB	0.2108	-0.0895	0.0352 ^{ns}	0.2548	0.0088 ^{ns}	-0.0173^{ns}
BI^S	-0.0164^{ns}	0.0742	0.0626	0.2439	0.0105^{ns}	0.0223 ^{ns}
HU	-0.0282	-0.0851	0.2720	0.2177	0.0198	-0.0108^{ns}
BI^T	-0.0307	-0.0995	0.0247 ^{ns}	0.4702	0.0149^{ns}	0.0132 ^{ns}
BY	-0.0761	-0.1373	0.0441 ^{ns}	0.3085	0.1450	0.1200
BI ^{\$}	-0.0594	-0.1039	0.0110^{ns}	0.2606	0.0134 ^{ns}	0.2742

Transmissions

• Parameter estimates for matrix **A** of the multivariate LogMEM(1,1)₁, fitted to 5-min realised volatility on Coinbase (CB), Binance Spot (BI^S), Huobi (HU), Binance USDT-perpetual (BI^T), Bybit (BY) and Binance USD-perpetual (BI^S)

- Column denotes emitting exchange, row denotes receiving exchange
- Diagonals in red capture flows back into exchange
- Superscript ns indicates estimate is not significant at 1%
- Data period 1 January to 31 March 2021.

4. Optimal Hedging in the Presence of Auto-Liquidations

Research Questions

- 1. Which product on which exchange is best for hedging?
- 2. Assuming you use the best product, what is the optimal hedge ratio that also minimizes the probability of auto-liquidations?
- 3. And, given your level of loss aversion, how much collateral should you keep in the margin account to achieve, say, 95% hedging effectiveness?

```
Introduction Auto-Liquidations Transmissions Hedging Speculation References
00000000 000000 000000 000000 000000
```

Problem Formulation

- Suppose the platform monitors the margin at discrete intervals Δt
- Assume the hedger holds 1 bitcoin at time t with spot price S_t and shorts θ units of the futures to hedge spot volatility until hedge horizon $t+N\Delta t$
- Direct and inverse perpetual futures prices: F_t and $\widehat{F}_t = F_t^{-1}$
- Set n-period profit from long position $\Delta_n S_t := S_{t+n\Delta t} S_t$,
- Similarly, n-period loss on short position is $\Delta_n F_t := F_{t+n\Delta t} F_t$
- Set $\Delta_n \hat{F}_t = \hat{F}_t \hat{F}_{t+n\Delta t}$ (in BTC) so a short position makes losses from an increase in its USD value
- Need to multiply $-\theta \Delta_n \widehat{F}_t$ by $S_{t+n\Delta t}$ to convert into USD
- Choose θ to minimize the variance of the P&L of the hedged portfolio:

$$\sigma_h^2(\theta) = \begin{cases} \operatorname{Var}(\Delta_N S_t - \theta \, \Delta_N F_t) & \text{(Direct)} \\ \operatorname{Var}(\Delta_N S_t - \theta \, \Delta_N \, \widehat{F}_t \cdot S_{t+N\Delta t}) & \text{(Inverse)} \end{cases},$$

Carol Alexander

27 / 41

 Hedging
 Spec

 00000000
 000

26 / 41

Adding the Margin Constraint

- Following Longin (1999), introduce the extreme price change operators:
 - $\Delta_N^* F_t := \max_{1 \le n \le N} \Delta_n F_t, \quad \Delta_N^* \widehat{F}_t := \max_{1 \le n \le N} \Delta_n \widehat{F}_t$
- Since we are short, a positive value implies a loss
- Margin constraint is represented by another parameter $m\geq 0$ being the collateral in the margin account, in excess of the minimum maintenance margin
- In other words, \boldsymbol{m} is the upper constraint on the hedger's ability to avoid auto-liquidation
- Hence, probability of auto-liquidation is

Carol Alexander

- $P(m, \theta) = \mathbb{P}rob(auto-liquidation) := \mathbb{P}rob(\theta \cdot \Delta_N^* X_t > m)$
- where X is price of either direct F or inverse \hat{F} perpetual
- This probability decreases with m and increases with $\theta_{\rm Carol \, Alexander}$

Hedging Problem and Solution

Introduce a loss aversion parameter γ to obtain final objective:

$$\min_{\theta > 0} \left\{ \sigma_h^2(\theta) + \gamma \sigma_s^2 P(m, \theta) \right\}$$

The optimal hedging strategy θ^* is given by

$$\theta^* = \omega^{-1} \theta_0, \qquad \omega = \begin{cases} 1 & (\mathsf{Direct}), \\ rac{S_t}{F_t^2} & (\mathsf{Inverse}). \end{cases}$$

where θ_0 is a positive root of the equation $\alpha(x)x^{-2} + x - \beta = 0$ with:

$$\alpha(x) = \frac{\gamma m v^2 w}{2\zeta} \frac{\sigma_{\Delta S}^2}{\sigma_{\Delta F}^2} \exp\left[-\left(1 + \tau \frac{m w x^{-1} - \mu}{\zeta}\right)^{-\frac{1}{\tau}}\right] \left(1 + \tau \frac{m w x^{-1} - \mu}{\zeta}\right)^{-\frac{1}{\tau} - \tau}$$

Carol Alexander

Extreme Value Distributions

In addition to γ and $m_{\rm r}$ the parameters of the optimal strategy are as follows:

- $v = \frac{\sigma_S}{\sigma_{rr}}$ is relative volatility of *n*-period spot and futures P&L
- $\beta = \frac{\sigma_{SF}}{\sigma_{r}^2}$ where the numerator is their covariance
- The constants $\mu,\,\zeta$ and τ are location, scale and right tail index parameter of distribution of extreme values of direct/inverse perpetuals for short positions
- Illustrate their estimation for 30-minute monitoring and 5d hedge horizon
- GEV parameter estimates based on rolling sample of 210 daily extreme values:

esumatio	n or call	parameters <i>a</i> , <i>p</i>	5,1 Heage Fe	nou iv
	1d	2d	210d	215d
te = 30min			Current time	$t + N\Delta t$

• Most important parameter for optimal short hedge ratio is right tail index τ

Carol Alexander 30 / 41

tion A 0000 0	uto-Liquidations 00000	5	Transn	nissions 0000		Hedging	0000	Spe	culation 0000	References	Introduction 000000000	Auto-Liquidations 000000	Transmissions 00000000	Hedging	Speculation 000000	Reference
Hedg	ge Effec	tive	ness	; – l	JSD	ΤD	irect	Pe	petu	ials		Answe	ers to Resea	arch Quest	ions	
Collateral	Loss Aversion	8h	Binance 1d	2d	8h	Bybit 1d	2d	8h	OKEx 1d	2d	1. Which	n product on whic	h exchange is b	pest for hedging	g?	
0.1	40 20 10	76.7 92.9 97.8	44.2 78.2 92.5	31.9 55.6 85.5	73.9 91.5 96.9	42.3 76.7 92.2 92.6	16.1 55.6 85.5	76.5 92.7 97.8	44.3 78.1 92.5	31.8 55.5 85.4	•	Direct USDT perj Binance Bybit an	oetuals are more	e effective than imilar protectio	inverse contr	acts
0.2	40 20 10 40 20 10	98.5 99.5 99.2 99.7 99.8	95.4 98.7 98.2 99.5 99.8	89.4 97.0 94.7 98.6 99.6	97.5 98.7 98.3 98.9 99.1	94.8 98.5 97.7 99.3 99.7	89.2 96.9 94.7 98.5 99.6	98.4 99.4 99.2 99.6 99.7	95.4 98.7 98.3 99.5 99.8	93.5 97.0 94.7 98.6 99.6	2. Assun minim	ning you use the l nizes the probabili	best product, w ty of auto-liquid	hat is the optir dations?	nal hedge rati	o that a
ffectiven	ess always	great	er tha	an usi	ng in	verse	perpet	ual o	n same	e exchange	3. If you the m	are highly loss av argin account for	verse ($\gamma=0.4$), 95% hedging e	how much col ffectiveness?	lateral should	you kee
he three amples	contracts for 99% e	offer ffectiv	simila /eness	ar pro	tectio	n					• ,	An 8h hedges req A 24h or longer h	uires ~ 20% co edge requires ~	llateral 50% collatera	I	
Examples for 99% effectiveness: • When $\gamma = 10$ an 8hr hedge requires 20% collateral • When $\gamma = 40$ an 8hr hedge requires 50% collateral • but a 2d hedge requires more than 50% collateral							4. Or, if keep i	you are not very n the margin acco An 8h hedge requ A 24h or longer h	loss averse (γ = ount for 95% he ires \sim 10% coll edge requires \sim	= 0.1) how mu edging effective lateral > 20% collatera	ch collateral s :ness? I	hould yo				
Carol Al	exander							33 / 41			с	arol Alexander			34 / 41	

000000	000000		0000000	>	000000	0000	000000			
	-	Turnove	5. Sp r Index	<mark>ecula</mark> Garcia	a <mark>tion</mark> a et al.	(1986	i)			
TI = Trading Volume Open Interest										
		Binance	USD Inv BitMEX	erse Perpe Bybit	etuals Deribit	OKEx	USDT [Binance	Direct Perp Bybit	oetuals OKEx	
Mean	Volume (B) OI (B) Short Liq. (M) Long Liq. (M) Liquidation (M) TI	1.03 0.76 1.05 3.23 4.28 1.54	0.49 0.73 1.48 2.80 4.28 0.71	1.20 1.85 2.87 8.64 11.51 0.77	0.20 0.58 0.48 0.55 1.03 0.38	0.25 0.36 0.39 0.92 1.31 0.76	2.75 1.54 7.90 13.92 21.83 1.91	0.22 0.29 1.50 2.05 3.55 0.80	0.29 0.14 1.54 1.23 2.77 2.11	
Median	Volume (B) OI (B) Short Liq. (M) Long Liq. (M) Liquidation (M)	0.88 0.70 0.59 1.23 2.07	0.40 0.75 0.32 0.37 1.33	0.95 1.86 1.69 4.08 6.72	0.15 0.58 0.01 0.02 0.05	0.20 0.34 0.14 0.16 0.52	2.31 1.61 3.93 5.08 11.67	0.17 0.30 0.72 1.05 2.34	0.23 0.14 0.50 0.49 1.45	

The 4-hour mean and median of trading volumes and open interest (billion USD), and short, long and total liquidations (million USD). Bitcoin perpetuals are USD inverse and USDT direct across Binance, BitMEX, Bybit, Deribit and OKEX. The data period is from 1 Jan to 31 May 2021. Data acquired from www.coinalyze.net.

35 / 41

Periodicity in OKEx Turnover Index

Speculation

- Turnover on OKEx, relative to Binance, for six 4-hour internals
- Data averaged over period 1 Jan to 31 May 2021

- Inverse perpetual (USD) turnover smaller than direct perpetual (USDT)
- Highest turnover 00:00 08:00 UTC [08:00 16:00 in China]
- Lowest turnover volumes 16:00 24:00 UTC [00:00 08:00 in China] Carol Alexander 36 / 41

Auto-Liquidation Index

Trading Volume

- Numeraire is total volume of auto-liquidations, can be measured every 4 hrs
- · Also decomposed into long and short volumes of auto-liquidations

Average of 4-hourly Liquidation Indices between 1 Jan and 31 May 20)2:
	-

		USD Inv	USDT D	Direct Per	oetuals			
	Binance	BitMEX	Bybit	OKEx	Binance	Bybit	OKEx	
LI (long)	0.11%	0.34%	0.55%	0.10%	0.17%	0.36%	0.76%	0.44%
LI (short)	0.27%	0.37%	0.28%	0.14%	0.19%	0.47%	0.62%	0.31%
LI (total)	0.39%	0.71%	0.83%	0.23%	0.35%	0.83%	1.38%	0.75%

- More frequent liquidations on USDT direct perpetuals
- · Most frequent liquidations on ByBit
- · Contrasts previous results using OI in denominator

 $\lambda_l \\ \lambda_s$

37 / 41

How Much Leverage? Long Position on Direct Perpetual

- Suppose leverage λ used to open long position when perpetual price is $F_0\Rightarrow$ initial margin IM is $\frac{F_0}{\lambda}$
- · Assume no additional collateral in/out of margin account
- Maintenance margin rate is $\frac{1}{2}$ initial margin rate $\Rightarrow \frac{1}{2\lambda}$
- Collateral in margin account at time τ is IM MM_{τ} = $\frac{F_0}{\lambda} \frac{F_{\tau}}{2\lambda}$
- Loss on long position at time τ is $F_0 F_{\tau}$

Carol Alexander

• Auto-liquidation occurs at time T if loss exceeds collateral, i.e. when:

 $F_0 - F_\tau > \frac{F_0}{\lambda} - \frac{F_\tau}{2\lambda}$

- Implied leverage is minimum value of λ to prevent auto-liquidation
- Found by setting equality above, $\Rightarrow \lambda = rac{F_{ au}}{2(F_0-F_{ au})}+1$

38 / 41

Speculation

Speculatio Implied Leverage

Long/Short Positions on Direct/Inverse Perpetual

• Similar arguments for short positions on direct d perpetuals, and long l or short \boldsymbol{s} positions on inverse perpetuals \boldsymbol{i} yield the following:

$\lambda_{lt}^d =$	$\frac{F_T}{2(F_t - F_T)} +$	1,	$\lambda_{lt}^s =$	$\frac{F_T}{2(F_T-F_t)}$	- 1
$\lambda^i_{lt} =$	$\frac{F_t}{2(F_t - F_T)}$ -	1,	$\lambda^i_{st} =$	$\frac{F_t}{2(F_T - F_t)}$	+ 1

Average implied leverages over all 4-hr internals from 1 Jan to 31 May 2021

	USD Inv	erse Perp	etuals		USDT D	irect Per	petuals
Binance	BitMEX	Bybit	Deribit	OKEx	Binance	Bybit	OKEx
11.26	8.28	12.53	7.04	8.71	12.55	14.16	13.51
14.95	14.38	15.23	6.70	15.17	12.64	12.61	10.41
					1		

- Implied leverage like average leverage of all traders on exchange
- 7X -15X is maximum leverage for positions sizes about 100 BTC (inverse)
- 10X 14X is maximum leverage for positions sizes about \$15 million (direct) Carol Alexander 39 / 41

$$\mathsf{AI} = \mathsf{Aggressive \ Index} = \frac{\sum_{t} \left[\lambda_{lt} \mathsf{LLV}_{t} + \lambda_{st} \mathsf{SLV}_{t} \right]}{\sum_{t} \mathsf{TV}_{t}}$$

- TV_t is total volume traded during time interval t
- LLV_t and SLV_t are total size of long and short auto-liquidations
- Aggregated over 4-hr intervals
- Also decomposed into long and short indices....

Aggressive Indices for Period 1 Jan and 31 May 2021								
	USD Inverse Perpetuals					USDT	Direct Per	petuals
	Binance	BitMEX	Bybit	Deribit	OKEx	Binance	Bybit	OKEx
AI (long)	3.52%	4.76%	9.03%	1.93%	3.22%	6.25%	13.12%	5.82%
AI (short)	1.52%	4.37%	3.65%	1.61%	2.41%	3.63%	8.81%	5.63%
AI	5.04%	9.13%	12.69%	3.54%	5.63%	9.89%	21.92%	11.45%

Most aggressive liquidations are on Bybit, especially long positions 40 / 41

Introduction	Auto-Liquidations	Transmissions	Hedging	Speculation	References
000000000	000000	00000000	000000000	000000	
		Referer	nces		

- Alexander, C., Choi, J., Massie, H., and Sohn, S. (2020a). Price discovery and microstructure in ether spot and derivatives markets. *International Review of Financial Analysis*, 71.
- Alexander, C., Choi, J., Park, H., and Sohn, S. (2020b). BitMEX bitcoin derivatives: Price discovery, informational efficiency, and hedging effectiveness. *Journal of Futures Markets*, 40(1):23–43.
- Alexander, C. and Heck, D. F. (2020). Price discovery in bitcoin: The impact of unregulated markets. Journal of Financial Stability, 50:100776.
- Garcia, P., Leuthold, R. M., and Zapata, H. (1966). Lead-lag relationships between trading volume and price variability: New evidence. *Journal of Futures Markets*, 6(1):1.
- Longin, F. M. (1999). Optimal margin level in futures markets: Extreme price movements. Journal of Futures Markets, 19(2):127–152.